The generator matrix 1 0 0 1 1 1 1 1 1 1 6 1 X 1 3 2X+6 1 1 1 1 1 1 X+3 3 1 1 1 X+6 1 1 1 1 2X 3 1 1 1 1 1 X+3 1 1 1 3 1 6 1 1 1 1 2X+6 1 1 1 3 3 1 2X+6 2X+6 1 1 1 X+6 1 1 1 2X 1 2X 1 1 1 X+3 1 1 1 1 2X X 1 0 1 0 0 3 2X+7 2X+7 X+8 1 X+5 1 5 1 2X 1 1 2X+8 X+4 X+7 X+2 4 3 X 1 2 2X+6 X 1 2X+1 5 X+4 4 1 1 2X+8 8 3 2X+1 8 1 2X+6 2X+4 2X+8 1 X+6 6 2 X X 2X+6 1 X+8 X+6 2X+4 2X+6 1 X+7 1 1 6 X+5 2X+3 1 3 1 7 1 2X+7 1 1 2X 2X+2 1 X+2 2 X+1 7 1 2X+6 2X+3 0 0 1 1 5 5 2X+6 1 4 2X+6 7 X+5 X+8 X+1 X 1 6 2X X+5 X+2 X+4 X 1 X+2 2X+7 2 X 0 2X+3 X 2X+7 X+5 X+1 2X+8 2X+7 5 X+2 2 X+8 7 2X+4 X+3 2X+1 2X+3 0 1 X+7 X+1 1 2X+5 X+5 3 0 2X+1 1 X+8 1 2X+2 2X 4 3 8 1 X+8 X+6 2X+1 2X+4 X+6 2 X+3 4 X+8 2X+6 X+7 8 X+3 2X+5 5 1 6 0 0 0 2X 6 3 0 3 0 6 6 6 0 0 0 6 6 3 2X+3 2X X+6 X+3 X 2X 2X+3 X+6 2X X+6 X X 2X X X+3 X+3 X+3 2X 2X+3 2X+6 X+3 2X+3 3 2X+3 3 2X+6 X 2X+3 2X+3 X+6 2X+3 X+6 2X 2X 2X+6 X 2X 6 6 X 2X+3 X+6 2X+3 2X 2X+6 0 2X 2X+6 X+3 2X 2X X+3 2X+6 X+6 0 2X+6 3 X+6 3 X+6 X 2X+6 generates a code of length 80 over Z9[X]/(X^2+6,3X) who´s minimum homogenous weight is 149. Homogenous weight enumerator: w(x)=1x^0+468x^149+886x^150+1914x^151+4254x^152+4880x^153+6420x^154+9000x^155+9042x^156+10950x^157+15882x^158+14222x^159+15252x^160+18744x^161+15038x^162+13788x^163+12774x^164+7738x^165+5838x^166+4830x^167+2376x^168+978x^169+894x^170+394x^171+204x^172+120x^173+68x^174+42x^175+60x^176+30x^177+18x^178+30x^179+12x^182 The gray image is a code over GF(3) with n=720, k=11 and d=447. This code was found by Heurico 1.16 in 84.3 seconds.